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SECTION 1

INTRODUCTION

In an effort to aid in the design and fabrication of devices more resistant to
single event upsets and to gain understanding of the internal dynamics of
devices struck by single radiation particles, device researchers have turned
to numerical simulation. Early studies of such phenomena involved
two-dimensional simulations of the response of two-terminal N+P diode
structures to single particle radiation 41,2,3]. These studies gave light to
a result coined the field-funneling effect.,

However, the picture which emerged from the initial diode simulations was
incomplete. As was demonstrated in [4,5] the response of more complex devices
was significantly different from that of simple diodes. For example, in 2-D
simulations of JFETS and MESFETS [4] it was found that the spreading of excess
charge deposited in the device substrate lowered the substrate resistance
substantially and provided a source-drain current path in a device that was '

initially in the off state. Additionally, only a small portion of the charge
deposited by the radiation particle was collected at a struck gate node.
Similarly, simulations of CMOS and bipolar or multi-layered devices [4,5]
showed the existence of extremely complex current paths, aside from those at
the struck node, and including such phenomena as plama wires or ion shunts
across the base region of bipolar devices. Such effects have, as a result,
been included in circuit simulations [6].

Even with the additional information provided by 2-D device simulation,
modeling of SEUs using circuit simulations is limited. There is substantial
interaction between the external circuit and the device. Thus, it is
important to couple the device simulation to the external circuit. Such an
approach has been followed in [7] where a two-dimensional simulation of a CMOS
memory cell, coupled to the external circuit, was performed.

While the present authors agree strongly that drift and diffusion simulations
of the devices in question must be coupled to the external circuitry, the
approach taken in [7] still has a major shortcoming; the drift and diffusion
simulations were limited to two dimensions. While it is true that much has
been learned through two-dimensional simulations about device response
characteristics when subjected to single particle radiation, the physics
involved is inherently three-dimensional. In [8,9] the present authors
demonstrated the significant inaccuracies resulting from the assumption of
two-dimensionality by carefully comparing results from both two- and A

three-dimensional simulations of charge collection in a simple silicon diode.
It was also demonstrated that the two-dimensional results for the collection
time and the current pulse could be made to follow the three-dimensional
result by properly scaling the track density. Such a scaling result was
recently found to apply to an NMOS structure which was simulated in both two
and three dimensions in [10]. However, even in these cases it was cautioned
that the transport process in two dimensions was highly inaccurate. Thus,
while two-dimensional simulations may provide a useful tool, results thus
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obtained must be, at least, verified through selective three-dimensional
computations.

While the need to perform three-dimensional transient simulations is readily
apparent, a major drawback has been the computational intensity of such
simulations. In 1981, Buturla, et. al. [11] reported on a three-dimensional
transient simulation involving the reverse recovery of an ellipsoidal
junction. The computational segment of the device simulated was 1.25 x 1.25 x
2.5pm and a finite element grid of 600 nodes with 810 elements was used.
Thirty time steps were taken and the simulation required approximately 5 hours
of CPU time [11] on an IBM 370/168 computer. By 1985, the situation had
improved. The three-dimensional transient simulation of charge collection
performed by the present authors [8,9] only required approximately 3.5 hours
of CPU time on a Cray 1 computer using a finite difference procedure with
17,500 grid points and 350 time steps. The algorithm used in those
simulations, while highly efficient, did not take advantage of the Cray's
vector architecture. However, the algorithm was ideally suited for
vectorization and it was estimated that when vectorized, run times would be
reduced by at least an order of magnitude making practical three-dimensional
transient simulations a reality for more complex structures.

This was indeed found to be a conservative estimate in [10] where a vectorized
version of this algorithm was applied to the simulation of a silicon NMOS
device. The simulation of the NMOS structure utilized a three-dimensional
mesh of 21560 points. 1050 times steps were taken during the simulation which
requircd only 1.44 hours of CPU time on a Cray I computer. This was roughly
16 times faster than the run time projected using a scalar version of the same
solution algorithm.

The present report continues to address the need for three-dimensional
simulations of single particle effects and two-dimensional scaling approaches
through the application of this vector algorithm to the simulation of a GaAs
JFET structure.
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SECTION 2

ANALYSIS

2.1 GOVERNING EQUATIONS.

The discussion which follows is general in that allowance is made for hetero-

junctions. However, in the JFET structure considered, no heterojunctions are
present. The governing continuity equations thus take the form

N 1 Vein + G - R (1)
at e

- VJ + G - R
8t e JP R

where the current densities are given by

in = e(Nin V(V+Fn) + DnVN] 
(3)

p = -e[Ppp V(lb+Fp) + DpVP) 
(4)

The quantities Fn and F are introduced to account for variations in the
conduction and valence band energy levels, and are related to the electron
affinity, the density of states and the energy band gap as [12]

i (5)
Fn = T (x + kT inNc)

I1 (6) .-

Fp (X + Eg - kT lnNv) (6)

The gradients of Fn and Fp give rise to local "effective fields" at
material interfaces which may augment or retard drift transport across the
interface. G and R in Eqs. (1) and (2) are generation and recombination
terms. The recombination term is given as

(7)~
NP - Ni2

R (NN) + (PN) + r(N+P)(NP-Ni2)

Here rn and rp are recombination lifetimes whereas r is a recombination
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rate constant. The first and second terms in Eq. (7) represent
Shockley-Read-Hall and Auger recombination, respectively. For GaAs, the
carrier lifetimes are on the order of 1 nsec.

Generation of carriers results from two effects in the present simulations;
impact ionization, and generation due to the energy absorbed from the incident
radiation particle. The authors have shown [8] that at bias levels of a few
volts impact ionization in a simple diode would not contribute to excess
carrier generation. Since the bias levels imposed here on reversed junctions
are, at a maximum, on the order of one volt, reverse breakdown of such
junctions is not anticipated and impact ionization should not effect the
results. However, this process is modeled in the present simulations
following the standard approach for completeness. Generation due to impact
ionization is expressed as

I= (anlJ'nl + aplIj,pl) (8)

where ak, (k = n,p) is given by

bk (9)
ak =Ak exp ('i---ik 9

The values of the constants A, b and m for GaAs are given in Table 1. It is
noted that the current densities used in Eq. (8) are limited to the drift
component of the particle currents only, following Sze [13], rather than the
full particle current (drift plus diffusion). The present authors believe
that this approach is more realistic because, for example, in a reversed bias
diode ideally the current flow is zero with drift and diffusion currents
balancing exactly. As a result, breakdown of the diode at high reverse bias
would not be predicted. When only the drift component is considered,
avalanche generation will occur at high fields and reverse breakdown will
occur.

Generation due to thermalization by the incident particle is modeled in a
straight forward manner as

N (r) (10)
Cr = exp [-t(r)/r(]

Here N,(r) is the concentration of particles generated within the track,
and can be a function of distance along the track. r. represents a time
constant thermalization, typically taken as 3 psec, and t(r) represents the
time elapsed from when the radiation particle penetrates the device to a
specific point along its track. For example, a 5Mev alpha particle possesses
a range of 18.5mm in GaAs and travels at an average velocity of
approximately 1.56 x l0' cm/sec. Thus, on average, carrier generation will
begin at the entry point of the particle track 1.18psec before generation at
the end of the track.

-4-
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While the model is sufficiently general to include the above-mentioned
effects, in the present simulations N. was assumed constant along the

entire track length, and the delay time along the track was neglected.
Therefore, generation was assumed to take place simultaneously and uniformly 2-
along the entire track length. P

Since space charge effects must be considered in the present analysis, a
self-consistent electric field must be determined from Poisson's equation

VeeVb - -p - e(N-P-C) (11)

where C is the net doping distribution of donor and acceptor ions. Here we
note that, due to the heterojunction formulation, the permittivity could be
spatially dependent.

2.2 MOBILITY AND DIFFUSIVITY MODELS.

The mobility model used in the present simulations allows for negative

differential mobility of GaAs electrons. The electron velocity is given by

1 (12)

Vn = [poE + a(E/Ev) 2 + b(E/Ev)3 + c(E/Ev)4 ] + 1E(12)
I+(E/E)

4

where the low field mobility, po, exhibits density dependence follow the
data of Blakemore [14]. An empirical fit to this data yields

Po = 5200 - 2800 tanh [0.902992[(logN) - 16.845](13)

The mobility is obtained by dividing the velocity, Vn by the electric field,
E. For holes,

Po (14)

1+ /E8

Vsat

where lEI is the magnitude of the electric field and Vsat is the
saturated drift velocity.

The diffusivity is then determined using the Einstein relation

kT (15)
D e - ~

D= --.

_ _.
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where k is Boltzmann's constant, and T is the temperature (taken here as
constant, 300°K). The constants used in the mobility expression are given
in Table 2.

2.3 BOUNDARY CONDITIONS AND DOPING SPECIFICATION.

The specification of the doping distribution and the boundary conditions
determine the type of device under consideration and the bias point. For the
two- and three-dimensional comparative simulations considered here, the device
structure is taken as two-dimensional in the X-Z plane. Three-dimensional
effects are introduced by the presence of the ionizing particle track. Thus,a
direct evaluation of the limitation of a two-dimensional modeling approach can
be made. The doping distribution for the device is thus given as

C(x,z) = ND - NA (16)

Boundary conditions are required for ohmic contacts and free surfaces. The
carrier densities at ohmic contacts are determined through the assumption of
zero space charge

N - P = C (17)

together with the assumption of thermal equilibrium

NP = Ni2  (18)
'"

The concentrations of electrons and holes at ohmic contacts, as well as the
initial distribution of carriers throughout the device, are determined by

simultaneous solution of Eqs. (17 and 18).

The po*-ntial at ohmic contacts is specified relative to the vacuum level, as
it must be if a consistent treatment of heterojunctions is to be retained.

At N-type contacts -,

kT N X (19)
T VApP + T-- in N e ,

NC e

and at P-type contacts

kT P E X (20)
kT in -.. .
e Nv  e e

It should be noted that in the absence of any variation in the electron
affinity, and under the assumption that the Fermi level is centered between
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the conduction and valence bands (i.e. Nc - Nv), Eq. (19), for example,
reduces to the commonly used relationship for homojunctions,

- VAPP + kT- 
in -

e Ni

where the contributions to the built-in potential from the band gap and
electron affinity are ignored since they are equal at all contacts.

At free surfaces, the normal component of electric field and current density
are set to zero.

2.4 MODELING OF THE TRACK.

Obviously, modeling of the track in three dimensions poses no significant
problems. The generation of the associated excess carriers, on a per-unit
volume basis, has been discussed previously. Thus, all that need be specified
in three dimensions is the total number of carriers to be generated, the range
of the ionizing particle (or track length) and an assumption of the initial
diameter of the track. The only approximation required, when using a
three-dimensional Cartesian coordinate system, is that the initial cross-
section of the track be modeled by a series of square cells. Thus, the
initial track cross-section will only approximate a circular cross-section.
The accuracy of this initial approximation will depend on the size of the grid
spacing relative to the track diameter. However, even when the grid spacing
is on the order of the track radius, this initial approximation rapidly decays
to a cylinOrical distribution, as demonstrated in three-dimensional
simulations of a simple diode [8,9].

In two dimensions, however, significant approximations must be made. As
discussed in [81, in two dimensions only the X-Z plane of the device is
considered, and the excess particle generated carriers are introduced over an
area of this plane. The length of this region is taken as the particle
penetration or track length while the width is taken as the initial track
diameter. Both the device and the track extend indefinitely in the unmodeled
third dimension. The particle track is thus represented by a slab of excess
charge rather than as a cylinder. To yield meaningful results from the
simulations, a depth in the third dimension must be specified. When choosing
this arbitrary depth several constraints provide guidance. However, not all
of the constraints can be met simultaneously. The constraints considered are
as follows:

(1) the total ion-generated excess charge,
(2) the density of carriers in the track,
(3) the volume of the slab representing the particle track, and
(4) the physical depth of the device.

Since the device structure is itself assumed to be two-dimensional, the fourth
constraint also sets the device contact areas.
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It is obviously necessary to introduce the correct number of electron-hole
pairs for a given particle, thus the first constraint must be met. The
remaining three constraints are all interdependent. If the depth of the
device is chosen as the actual physical device depth, then the contact areas
will be correct but the volume of the slab representing the particle track
will be much greater than the actual cylindrical track, and to maintain the
proper total charge the track density must be reduced below its actual level.
On the other hand, if the device depth is chosen to be on the order of the
initial track diameter, then the volume of the slab of excess carriers will
closely approximate the actual track volume and the carrier density within the
track will be near the actual value. However, the device contacts will be
much smaller than in reality. In a recent, comparative two- and
three-dimensional study performed by the present authors [8], it was found
that the first approach, choosing the device depth as the relevant parameter
and adjusting the track density, yielded similar current pulses for both two-
and three-dimensional simulations; the second choice resulted in significantly
larger collection times and over-predicted field distortions. The first
approach was also found to yield excellent results in the NMOS simulation
reported in [10]. Thus, the approach followed in the two-dimensional device
simulation performed here is to assign a value to the depth parameter
representative of the device depth.

It should be cautioned, however, that while the results of the comparative
studies of [8] and [10] gave good predictions of the current pulse, compared
to the full three-dimensional simulation, the details of carrier transport in
the devices were significantly different. Therefore, in complex devices, such
as that considered here, if carrier transport details are important the
present approach may be only qualitative at best. For this reason, the
authors continue to advocate that full three-dimensional simulations be
performed for complex structures, at least to verify the two-dimensional
modeling approach. This comparison and verification is one of the objectives
of the present research applied to a GaAs JFET.

8



SECTION 3

THE NUMERICAL METHOD

3.1 PHILOSOPHY OF THE SOLUTION PROCEDURE

A detailed discussion of the solution technique, including the development of
consistent difference approximations to the governing equations, is given in
[15]. Thus, the discussion here will be limited to the philosophy behind the
technique and implementation on a vector machine.

In an effort to develop a highly efficient solution technique to the system of
Eqs. (1, 2 and 11) it is first recognized that this system is a coupled,
non-linear system. If solved as a coupled system, it will require utilization
of methods designed for coupled elliptic equations to obtain a solution at
each time step. These methods typically introduce some outer iteration to
treat nonlinearity and the methods used to solve the difference approximations
to the linearized system are often computationally intensive in two
dimensions, and totally impractical to implement in three. By contrast, the
method used here eliminates nonlinear iteration, uses a noniterative yet
highly efficient procedure to solve the difference approximations to the
continuity equations, and uses an extremely efficient iterative technique to
solve the equation governing the potential. As shall be discussed, these
solution techniques are also ideally suited for implementation on vector
machines and/or parallel processors making them even more attractive.

The first step in this procedure is to decouple Poisson's equation from the
continuity equation in a manner which does not adversely -ffect stability of
the overall solution algorithm. This is accomplished by reformulating the
continuity equations by expanding the drift term, and substituting the space
charge for the Laplacian of the potential. After manipulation, the result is

aN Ne
a- -V * NpnVFn - V/nN * VO - T'n i- (N-P-C)

N (22)+ An 7 VE * Vo + V * DnVN + G - R

8P Pe- =V * Ppp VFp + VpP e V-0 + Mp P- (N-P-C)

- Pp VE e V0 + V e DpVP + G - R (23)

To ensure conservation of total current, Poisson's equation is recast as a
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statement of total current,

av - -V_ eV ° Npn V(O + Fn) -eV ° PppV(b + Fp)at

+ eV *(DnVN - DPVP) (24)

From Eqs. (22-24) it is easily shown that at steady state, Poisson's equation
is satisfied exactly. A small error is introduced in transients, as discussed
in [15].

Eqs. (22-24) form the basis of the solution algorithm. To advance the
solution from tn to tn+l - tn + At, the mobilities and diffusivities
are evaluated using the electric field and carrier densities at tn.
Additionally, the gradients of potential appearing in the second and fourth
terms on the R.H.S. of Eqs. (22 and 23) are evaluated at the tn level. This
effectively decouples the continuity equations from the total current
constraint and allows the carrier concentrations to be advanced first. This
decoupling does not introduce a stability constraint [15].

The advance in time of the carrier concentrations is performed by solving the
continuity equations (Eqs. (22 and 23)) as a block 2x2 coupled system through
application of a linearized block implicit (LBI) method [16]. The continuity
equations are of the form

a= D(O) + S(O) (25)
at

where 4 - (N,P)T, D(O) represent those terms in Eqs. (22 and 23) which
contain spatial derivatives of 0, and S(O) represent source terms such as
the recombination, generation and space charge terms. Eq. (25) is then time
differenced using a backwards differencing scheme,

Aon+l (26)
At - D(4)n+l + S(O)n+l + Q(At)

where Aon+l = Tn+l - on, and the superscripts refer to the time
level. D(O)n+l and S(O)n+l are then formally linearized in time using
a Taylor series expansion about the solution at time tn as

G(O)n+l = G(O)n + At aG(O) + (At2)27)

Substituting a forward difference approximation for the time derivative in
Eq. (26)

G(O)n+l = G(O)n + aG(_) nAon+l + O(At2 ) (28)
ao I

I0 -

V N-



Eq. (26) may then be expressed as

(A + _L)Ap+1 -t(D(O)n + S(O)n) + O(At) (29)

where

A I - At Sa() n (30)

and

aD )ln (31)
L = - __

When the L operator is approximated by three-point difference approximations
Eq. (29) represents a block 2x2 matrix equation which may be written at each
grid point in the solution domain. In one dimension, the result is a block
2x2 tridiagonal coefficient matrix which may be solved efficiently using
direct block tridiagonal elimination. For two- or three-dimensional
approximations, while the block size remains 2x2, since it is determined by
the number of coupled equations, the bandwidth of the resulting coefficient
matrix increases significantly. In two dimensions, on a square mesh of NxN
points, the rank of the coefficient matrix is of order N2 and the bandwidth
is of order N. In three dimensions, with an NxNxN mesh, the rank of the
coefficient matrix is of order N3 and the bandwidth of order N2 .
Obviously, use of direct inversion techniques for such matrices, for even
relatively small meshes, would result in a computationally intensive and
inefficient solution procedure. For this reason, iterative matrix solvers are
often used. However, for large meshes even these iterative solvers may become
prohibitive and should be avoided, if possible. This can be accomplished, due
to the parabolic nature of continuity equations, by applying a consistently
split ADI procedure [17] to solve Eq. (29). To split or factor Eq. (29), the
L operator is separated into its directional components, L = L + + Lz,
and Eq. (29) is rewritten as a sequence of one-dimensional systems along each
mesh line in the x, y and z directions respectively:

(A + AtLX)A2* - AttD(O)n + S(O)n) (32a)

(A + AtLy)A** = AAO* (32b)

(A + AtLz)A* =A (32c)

Elimination of the intermediate steps in Eq. (32) yields

(A + AtL)A' 1 (A + AtLy)A'l(A + AtLz)A* - At(D(O)n + S(O)n] (33)
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Comparison of Eqs. (29 and 33) shows that Eq. (33) approximates Eq. (29) to
O(At 2 ), thus

-
n + l _ Ao*** + 0(At 2) (34)

While this factorization error may place additional restrictions on the time
step when considering accuracy, the overall reduction in computational effort
will typically more than offset this limitation. Each of Eqs. (32) is
tridiagonal, thus direct elimination can be implemented in a highly efficient
manner. On an NxNxN mesh, the factorization reduces the need to solve a rank
N3 matrix to a task requiring the solution of 3N2 tridiagonal matrices of
rank N. Since only tridiagonal matrices need to be solved, regardless of the
mesh structure, the number of operations per mesh point remains constant and
the computational effort required to solve the continuity equations varies
linearly with total mesh points when implemented on a scalar machine.

Having advanced the carrier concentrations, the total current constraint, Eq.
(24) must be solved for the potential. Since the carrier densities at tn + l

are now known, Eq. (24) can be differenced fully implicitly while only 0
remains unknown. It must be noted that while a time derivative appears in Eq.
(24), this equation remains elliptic and must be solved iteratively. To
accomplish this Eq. (24) is recast as

(35)

at + eVeNpn V(/) + Fn) + eVoPppV(o + Fp) eVo(DnVN DpVP)

and Eq. (35) expressed as

(A + L)Aobi+l = 1D(,O)i + S(4fi)iJ(6

where

1 8S() i (37)
Aa~ I I

and

L aD()i (38)
ao&

Here, D(0) includes the first three terms on the R.H.S. of Eq. (35) and
S(0) the last term. The superscript "i" refers to an iteration index and
p is an acceleration parameter which varies both spatially and from
iteration to iteration. Eq. (36) may be ADI split, as were the continuity
equations, following Eqs. (32). However, in contrast to the continuity
equations, the total current constraint must be iterated to convergence at
each physical time step. With the proper choice of acceleration parameters
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this can be accomplished rapidly and efficiently. It should also be noted
that since the D operator is linear in 0, L - -D and the D operator need
only be computed at the start of the iteration and stored. Similarly, the S
operator is not a function of 0 in this case, thus BS/8 - 0. The S
operator also need be computed only once and stored. At convergence,
A01+ 1 - A*** will go to zero and, as may be observed from Eq. (33),
the factorization error will also go to zero and the difference approximations
to Eq.(24) is solved exactly. This completes the advance of the solution from
tn to tn+1. The process is then repeated for the next time step.

3.2 IMPLEMENTATION ON A VECTOR MACHINE.

The procedure described in the previous section has proven to be a very
efficient procedure. The basic efficiency of the algorithm lies in the low
operations count of the procedures used to solve the systems of difference
equations. On a three-dimensional mesh with a total of NT grid points, the
number of operations required to solve Eqs. (29 and 36) is given as [15]

OPT3D = 108NT + (15NT)I (39)

where I is the number of iterations required in the solution of the total
current constraint. On a two-dimensional mesh this reduces to

OPT2D = 7 2NT + (10NT)I (40)

since only two of the ADI sweeps need to be performed. For a one-dimensional
problem the result is

OPTID = 3 6NT + (5NT)I (41)

Note that in each case, the multi-dimensional operation count is simply the
one-dimensional result times the number of dimensions.

In three dimensions, the total number of grid points NT is the product of
the number of mesh points in each direction, respectively

NT- Nx * Ny * Nz  (42)

Thus, the three-dimensional operation count is the sum of the operations
required for each of Eqs. (32a - 32c)

OPT3D = (36Nx + 5NxI) * NyNz

+ (36Ny + 5NyI) * NxN z

+ (36N z + 5NzI) * NxNy (43)
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where there are NyNz "x" implicit lines, NxNz "y" implicit lines and
NxNy "z" implicit lines. Since each of the "x" implicit lines requires
the same sequence of operation to be performed to solve Eq. (32a), then the
solution of the "x" implicit lines can be done in parallel, or in a vector
loop. Similarly, the operations required to set up or generate the difference
equations which constitute Eq. (32a) can also be performed in vector loops.
As a result, rather than set up and then solve Eq. (32a) along each of the
NyNz "x" implicit lines one at a time, all NyNz "x" implicit lines may
be processed at once in a single vectored loop, providing sufficient storage
is available. The NyNz scalar operations are replaced by a single vector
operation. In general, a vector length, VL, may be defined, and the number of
vector loops needed to solve Eq. (32a) will be the integral part of
(NyNz)/VL. Similar results are obtained for the "y" and "z" implicit
counterparts, Eqs. (32b and c). The number of vector operations required to
solve Eq. (32), for three-dimensional problems then becomes

OPTV3D = 108NT/VL + (15NT/VL)I (44)

If an NxNxN mesh is used and sufficient storage exists for VL = N2 =

NT 2/3 , then

- (45)

OPTV3D = 108NT3 + (15NT 3 )I

For two-dimensional problems the result is

1 (46)

OPTV2D = 72NT
2 + (lONT 2 )I

Comparison of Eqs. (45 and 46) with their scalar counterparts, Eqs. (39 and
40), immediately reveals that there are substantial savings for both two- and
three-dimensional algorithms; that the larger the problem, the greater the
potential savings; and the potential savings is greater in the
three-dimensional case. However, in the present simulations, the vector
length was limited to VL - NT1/3 for the three-dimensional problems
and VL - NT1/ 2-N for two-dimensional problems. Thus, while Eq. (46)
yields an indIcation of the performance obtained in two dimensions, the
three-dimensional performance followed the estimate

2 2

OPTV3D 108NT3 + (15NT3)I (47)

14 -



SECTION 4

RESULTS

4.1 DEVICE STRUCTURE CONSIDERED.

The structure of the GaAs JFET device considered under the present research is
shown in Fig. 1. The device structure is taken to be invariant in the third
dimension (into the page) thus the three-dimensional effects are limited to
those due to the particle track. The device, which is representative of
current JFET technology, consists of an N+ source and drain, doped to
2x1017 /cm 3 , a p-gate doped to 2x10'7/cm 3 and a l.OxlO17/cm3 N type
channel. The substrate is w GaAs, nominally p-type (lxlO14cm3 ). The
dimensions of the device are shown in the figure but it is worthy to note that
the source-drain spacing is 3pm. The device is taken as 25pm wide (into
the page). The source and drain diffusions penetrate 0.5gm into the
device. The channel is 0.3pm deep and the gate diffusion penetrates 0.2gm
into the channel.

The device was biased in the off state with 1 volt applied to the drain and 0
volts applied to the source and the gate contact. The substrate was also
grounded.

4.2 DETAILS OF THE PARTICLE TRACK.

The incident particle considered in the present simulations is a 5MeV alpha
particle. As shown in Fig. 1, the particle is assumed to enter the device
through the gate diffusion and penetrate approximately 18.5mm, the range of
such a particle in GaAs [18]. Since 4.5eV are required to produce a single
electron-hole pair in GaAs, a 5MeV particle will generate about 9.375xi05

electron-hole pairs. In the present simulations these excess carriers are
introduced uniformly along the track. Since the initial track radius is of
the order of 1000A, this results in a track density of 1.38x10l8 /cm3 for
the three-dimensional simulation where the track is represented by a square
cross-section .2x.2pm. For the two-dimensional simulation the track is
modeled as a slab .2pm thick, 18.5gm long and extending the width of the
device, 25gm. Recall that in two dimensions the calculations are performed
on a per-unit width basis and, as discussed in section 2.4, the assignment of
the assumed width of the device is critical. Using the actual device width
was found to yield similar results between two- and three-dimensional
simulations in [8] and [10] and this approach is followed here. Using 25pm
as the width parameter yields a track density of 1.103xl01 6 /cm3 substan-
tially below the actual track density, but yielding the correct total number
of excess carriers.

4.3 THE COMPUTATIONAL PROCEDURE.

The first step in performing the simulations is the construction of a suitable
finite difference grid. For the two-dimensional simulation an unequally-
spaced mesh of 51 x points by 44 z points was used. The mesh in the X-Z plane
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is shown in Fig. 2. The mesh is structured to give adequate resolution of
junctions and the particle track. For the three-dimensional simulation, the
same mesh was used in the X-Z plane with 18 grid points,unequally spaced, in
the y direction. The X-Y and Y-Z mesh structures are shown in Fig. 3. Note
that since the particle is assumed to strike the center of the device, the
solution will be symmetric about the center, and only half the device need be
modeled in three dimensions. Thus, the y grid extends from the center of the
device (and particle track) to the device edge. Note the orientation of the
coordinates in Figs. I through 3 as this will aid in the interpretation of
contour plots presented later.

The next step is to compute the solution for the initial, undisturbed state.
Since, in the absence of the particle track, this solution is invariant in the
y direction, the solution need only be computed in two dimensions. This
result was used for the initial condition in both the two-dimensional and
three-dimensional transient charge collection simulations.

The two-dimensional transient simulation was then computed using 2000 time
steps and a CPU time on a Cray X/MP24 computer of 14.13 minutes or 0.00018
sec/grid point/time step. This was 14 times faster than the original scalar
version of the code. In the three-dimensional simulation smaller time steps
were required initially to maintain sufficient accuracy with the higher
initial track density. Thus, the three-dimensional simulation required 2075
time steps yielding a CPU time, on a Cray X/MP24, of 6.83 hours or about
0.00029 sec/grid point/time step. This was roughly 15 times faster than the
projected run time based on the original, scalar code.

4.4 THE EQUILIBRIUM SOLUTION.

Since the equilibrium solution is not a function of the Y coordinate
direction, it need be examined in only a single X-Z plane. In Fig. 4 contours
of the log of electron and hole concentrations, and potential are shown. The
density contours are equally spaced with an increment one order of magnitude.
The potential contours are also equally spaced with an increment of 0.1
volts. The results are as expected, showing the N+ diffusions and depletion
of the electrons in the channel. Figs. 5 and 6 show details of the contours
of the carrier densities in the channel region of the device in both a linear
(Figs. 5a and 6a) and a log scale. The tick mark on the bottom of the figures
is 2.5pm from the contact surface. Fig. 7 shows an enlargement of the
potential contours in the same region and a surface plot of the steady state
potential distribution. The typical high field region at the drain side of
the gate is clearly evident in this figure.

The device structure is such that it is a normally off device, thus at the
applied bias level, there is negligible source-drain current. This provides
an excellent initial condition for the charge collection simulations to be
performed. Any current observed during the transient will be a direct result
of the disturbance generated by the particle strike.

4.5 COMPARISON OF THE TWO- AND THREE-DIMENSIONAL TRANSIENT RESULTS

The main point of interest in the comparison of the two- and three-dimensional
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charge collection transient simulations is the shape and duration of the
current pulse at the struck gate node and the charge collected there. The
current pulses at other contacts are also of interest as they may affect
device operation. The current pulses at the source, gate and drain contacts
are shown in Fig. 8 for the two-dimensional case. The positive drain current
indicates electrons leaving the device while the negative source current
represents injection of electrons. The gate current is made up of electron,
hole and displacement current, however, it is predominantly hole current and
represents collection of holes from the particle track. The results shown in
Fig. 8 are very similar, both in duration and magnitude, to the results
obtained for a JFET in [4] despite the fact that the source, drain and gate
diffusions were more heavily doped (5xlO'8/cm3 ) in [4).

As shown in Fig. 8, the gate current in the two-dimensional simulation
increases rapidly to a peak of 0.325ma in less than 10psec and then decays in
an exponential manner. By 100psec the gate current is approximately 0.02ma
and further decay takes place on a very long (relatively) time scale. By
400psec the gate current is only about 0.O06ma and continues to decay slowly.

The initial peak in the gate current is associated with the collection of
holes generated in the gate depletion region. Once these holes are collected
the gate current decays and additional holes are collected slowly as they
diffuse into the junction reg.on. As will be discussed subsequently, field
funneling at the P+N junction between the gate and channel does not occur,
at least not in the usual sense.

The current pulses at the source and drain are also shown in Fig. 8. The
drain current exhibits a rapid rise to its initial peak which occurs at
approximately 10psec. This initial peak is associated with the collection of
the electrons generated in the gate junction. A small positive peak is also
observed at the source. This is also associated with the collection of
electrons generated in the gate junction. However, this peak rapidly decays
and the source current becomes negative, balancing the drain current, which is
well in excess of the gate current. Obviously the source-drain current is not
simply associated with the collection of the excess, particle generated
carriers. Rather, it is a result of the spreading of the excess carriers
generated in the substrate. As in the simulation reported in [4], the excess
carriers lower the substrate resistance and open a current path around the
gate allowing a source-drain current to flow. This current will continue to
flow for a substantially longer time than that associated with the gate
transient since the carriers in the substrate move primarily by diffusion and
are collected slowly, or recombined. Since, as time goes on, the excess
carrier concentrations become small, the diffusion and recombination processes
will become even slower and the elimination of excess carriers from the
substrate will drag on. The source-drain current will continued to flow
during much of this time.

The current pulses at the source, gate and drain contacts for the
three-dimensional simulation are shown in Fig. 9. Here it is observed that
while the results are qualitatively similar, quantitative differences are
apparent. The peak in the gate current is only 0.18ma. However, after 25psec
the gate currents are almost identical. The drain current does not exhibit
the rapid rise to an initial peak and the positive peak in the source current
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is greater. Additionally, the source-drain current is not as high.

The charge collected at the gate contact for the two- and three-dimensional
cases is shown in Figs. 10 and 11, respectively. As shown, the results
reflect the differences in the initial peak in the gate current. After
400psec the two-dimensional result indicates the collection of more than 6% of
the particle-generated charge, or charge contained in the first l.lpm of the
track. By comparison the three-dimensional result shows only slightly more
than 5% of the charge collected, corresponding to the first 0.925pm of the
track. By 400psec, however, the rate of charge collection is nearly the same
for both cases.

The differences in the results for the two- and three-dimensional cases are
somewhat surprising in light of the excellent agreement obtained in [8] for a
silicon diode, and [10] for an NMOS device using a similar method to scale the
particle track. However, the discrepancy between the present results and
those of [81 and [10] can be explained by consideration of differences in the
device structures and the response of the field to the particle track. In [8]
and [10] the diffusions of the struck N+ regions were deep enough so that at
the contacts the electric field was very small. Since the carrier density at
the contact was fixed, and since the low field mobility in the region of the
contact was also constant, the contact resistance was also constant giving
rise to a linear current-field relationship at the contact. Thus, in the
scaled two-dimensional simulations of [8] and [10], while the field
disturbance at the contact was smaller than the localized disturbance in the
contact field observed in the three-dimensional results, the two-dimensional
disturbance occurred over the entire device width. As discussed in [8] the
result is that the average field over the contact area is the same in both
cases and, since a linear current-field relationship exists, the contact
currents and collected charge were equal. In the present JFET simulations the
gate P+ diffusion is only on the order of 2000A deep and space charge
effects are present near the contact surface. As a result the field at the
contact is not low. In fact it is high enough to result in velocity
saturation. Therefore, a linear current-field relationship does not exist and
even with an equal average field over the contact area the contact currents
are not equal. The higher local field in the three-dimensional case does not
give rise to a linear increase in the local current density because the
velocity is in saturation. Rather, the increase in the field results in a
lower diffusivity which upsets the local balance between drift and diffusion
and modulates the local current density in a nonlinear fashion. In the
present case this results in a lower initial gate current for the
three-dimensional simulation.

The localization of the field distortions in the three-dimensional case, and
the absence of the field funneling effect at the gate diffusion are
illustrated in Fig. 12. Here the potential along the axis of the particle
track is compared for the two- and three-dimensional cases with the steady
state result. The potential along a line parallel to the track axis in an X-Z
plane 1 2 .5pm below the track, on the surface of the device, is also shown.
The results are at 40psec following the particle strike. The gate contact is
at a distance of zero. The potential distribution along the track axis shows
reasonable agreement between the scaled two-dimensional simulation and the
three-dimensional result. It is readily apparent that there is no field
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funneling effect down the axis of the track, drawing holes toward the gate.
Instead, the field in this region increases significantly, with the greater
increase occurring in the three-dimensional case. However, the results can be
interpreted as a field funneling effect which draws electrons from both the
gate diffusion and the r-type substrate into the N channel. The comparison
12.5pm below the track axis shows that in the gate-channel junction there is
very little effect of the disturbance although the disturbance is felt
slightly in the substrate.

The distortion of the potential along the axis of the track and elsewhere
within the device can be explained by examining the net electron and hole
charge collected at all device contacts. This result for the two-dimensional
simulation is shown in Fig. 13 and for the three-dimensional simulation in
Fig. 14. As can be seen, during the initial phase of the transient more
electrons are collected than holes. Thus, the net excess charge in the device
is positive, and in accordance with Poisson's equation and Green's theorem the
curvature of the potential surface must become more negative, and the field at
the device contacts must change in a consistent manner. This is discussed in
detail for the case of a simple two-terminal diode in [11] and the arguments
brought forth there apply equally to any device. The distorted potential
along the track axis is consistent with these requirements.

It should be observed in Figs. 13 and 14 that after approximately 150psec, the
net charge imbalance remains constant. This imbalance is expected to remain
nearly constant until all the excess electrons are collected from the device
or recombined. At that time the source-drain current will decay to zero and
the remaining excess holes will be collected (at the gate and substrate) and
the potential will return to its original state. Based on a constant
collection rate for holes obtained from the slope of the curve in Fig. 14 at
400psec, the time elapsed before complete field restoration (complete charge
collection) will be at least another 17.4nsec. Since the gate current, where
most of the holes are collected, continues to decrease, as shown in Figs. 8
and 9, the average collection rate will typically be at most half the value at
400psec, and the time for complete restoration may be in excess of 35nsec.
This time scale may be reduced by recombination, however, as the carriers
diffuse throughout the substrate the excess carrier densities become very low
and the recombination effects will become unimportant.

Fig. 15 shows contours of the log of the electron concentration at five
instants during the transient for the two-dimensional case. In these figures,
as in Fig. 4, the contour spacing is one order of magnitude. The contacts are
on the left side of the figure with the source contact at the bottom of the
left side. In Figs. 15a, b and c the contour value in the center of the track
is 2xl016 /cm3 . In Figs. 15d and e, only the 2xl0'4 /cm3 contour
remains. Similar results are shown in Fig. 16 for the X-Z plane containing
the particle track in the three-dimensional simulation. Again, the contour
spacing is one order of magnitude, however, the maximum contour values at the
center of the track are larger. In Fig. 16a the center contour is at
2xl1 1 /cm3 . The center contour value in Figs. 16b, c and d is
2xl016 /cm3 and in Fig. 16d the value is 2xl0'6 /cm3 . Thus, while the
spreading of the excess charge appears qualitatively similar in the two- and
three-dimensional simulations quantitatively they are quite different. This

- 19 -

~ .A'~,' ~ ~j~m .. ,,%? eV,~ ~ : > ., ~ - - - .~w %~ 'B.



is a direct result of the higher initial track density of the

three-dimensional simulation and shows the stronger, more localized
disturbance present in three dimensions. Also note the difference in the
contours in the immediate region of the gate diffusion.

Similar contours for hole concentrations are shown in Figs. 17 and 18. In
Fig. 17, for the two-dimensional results, the maximum contour value associated
with the track is 2xl0'/cms in 17a through d and 2xl0 1 4 /cms in l7e.
In Fig. 18 the maximum contour values are 2xl0' 7 /cm S for 18a,
2x10 6 /cm3 for 18b, c and d, and 2xl0'/cm3 for 18e.

Potential contours for the two- and three-dimensional simulations, in the X-Z
plane of the particle track are shown in Figs. 19 and 20 at the same instants
in time as the electron and hole contours. In these figures the increment
between potential contours is 0.1 volts. There is good quantitative and
qualitative agreement between these comparisons indicating that the scaling of
the particle track density still holds even though the limited gate current
alters the current and charge collection transient somewhat. The slightly
greater initial disturbance of the potential along the track axis is clearly
evident in Fig. 20. A more vivid comparison of the potential disturbance in
this plane is shown in Figs. 21 through 25 where the 2-D and 3-D potential
surfaces are compared side-by-side. The similarity in the distortion of the
potential surfaces in the substrate is clearly evident here.

While the comparisons of the potential surface in the plane of the particle
track presented in Figs. 21 through 25 show both qualitative and quantitative
agreement it must be recalled that the distortions associated with the
two-dimensional result extend over the entire assumed device width. However,
the three-dimensional disturbance may exhibit significant -ariation over the
device width. To examine how far the disturbance caused by particle track
extends in the third (y) dimension, the potential variation in two planes
normal to the particle track is presented in Figs. 26 through 30 at five
instants during the transient. In these figures the viewer is looking
directly down the particle track, through the gate contact. Since the
solution is symmetric about the z axis, only the top half of the device is
shown in these figures. Thus, the particle track is centered at the bottom of
the figures. In each figure, the left-hand frame represents the Y-Z plane
0.5pm below the contact surface, just at the edge of the channel. The
right-hand frame is for a Y-Z plane 8.24pm below the contact surface, in the
substrate. The source contact is on the right, and the drain is at the left
of each frame. Note that in the channel region of the device the Listurbance
never extends much further than 2.5pm outward from the track axis in the y
direction. The nearly parallel, vertical potential contours indicate
two-dimensionality, i.e., a lack of variation in the y direction. In the
substrate, however, the result is somewhat different. In the absence of the
particle track this plane would be at a constant potential. The particle track
creates a disturbance which propagates radially outward from the track axis.
Since there is no spatial variation of the donor or acceptor concentrations in
the substrate, the disturbance is cylindrical about the track axis as opposed
to the three-dimensional behavior observed in the active region of the device.
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SECTION 5

SUMMARY AND CONCLUSIONS

The results of the present study show that the response of a typical GaAs JFET '
structure to single particle radiation entails a much more complex process

than simple field funneling at the struck node. In the present study a JFET
device, which is normally in the off state, was struck through the gate
diffusion at normal incidence. However, the collection of charge at the gate
was not augmented by the field funneling effect. Instead, a field funneling
effect was set up between the gate and the N-channel, and the channel and the
substrate drawing excess electrons into the channel to subsequently be
collected at the drain. This was generated by a charge imbalance which
resulted from the rapid collection of electrons from the gate depletion region
while the holes, due to their lower transport coefficients and velocity
saturation at the gate contact, were collected more slowly. The charge
imbalance resulted in the distortion of the potential surface in an attempt to
maintain charge neutrality. It appeared that this initial imbalance would
remain constant for the duration of the event. However, a more significant
aspect of the response was that the spreading of the excess charge throughout
the substrate lowered the substrate resistance significantly and opened a
source-drain current path in the off device. In essence, the presence of the
N-channel blocked the collection of holes from the substrate and, in order to
maintain a nearly charge-neutral state, electrons were injected at the source
to replace those collected at the drain. There were, in effect, two
components associated with the drain current. First, there was a small
component of the drain current, balanced by a hole current at the gate, which
accounted for collection of the excess carriers. As the results indicated, by
400psec this fraction of the drain current was very small. Second, there was
the much larger portion of the drain current balanced by the source. This was
similar to a typical FET current and was due to a modulation of the field in
the channel and substrate by the spreading of the excess carriers. The
simulations indicated that this would continue until the excess holes were
collected. Since the excess carriers move through the substrate primarily by

diffusion and since the holes must diffuse across the channel to the gate to
be collected, the source-drain current flowed for a much longer time than that

associated with the gate transient. The effect is exaggerated in GaAs due to
the low diffusivity of holes. The present simulations indicated that this
source-drain current could continue to flow 35nsec after the particle strike
even though the gate transient was effectively over in 400psec.

In two previous studies [8,101 comparative two- and three-dimensional
simulations of a silicon diode and an NMOS structure demonstrated that
appropriate scaling of the charge density along an ion track in a
two-dimensional simulation yielded a current pulse and charge collection rate
that was in excellent qualitative and quantitative agreement with the
three-dimensional results. Thus, it appeared that SEU simulations of such
devices could be performed with reasonable confidence using the two-dimen-
sional approach. The present study was undertaken to further verify such a
scaling approach in a GaAs JFET. While the results of the present simulations
showed qualitative agreement between the two- and three-dimensional JFET
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simulations, quantitative differences in the current pulse at the device
contacts and the resulting charge collection rate were observed. The peak
current at the struck gate node was significantly lower in the
three-dimensional simulation, by almost a factor of two. After 25psec
however, the gate currents were almost identical in both cases. After
400psec, the gate current had decayed to less than 4% of the peak value. At
that time the collected charge at the gate node was about 6% of the total ion
generated charge in the two-dimensional case and about 5% in the
three-dimensional case due to the lower peak current.

Significant differences were also observed in the resulting source-drain
current which flows due to a lowering of the substrate resistance by the
spreading of the excess carriers generated there. Here, the drain current did
not rise to as high an initial peak in the three-dimensional simulation and
the long term source-drain current level was somewhat lower.

After careful examination and comparison of the simulation results it was
determined that the primary cause of the differences in the two- and
three-dimensional results was a result of the device structure. Because of
the shallowness of the p+ gate diffusion, velocity saturation occurred at
this contact, even before the particle strike, and the contact resistance is
not constant but highly dependent, in a nonlinear fashion, on the field at
this contact. In the two-dimensional case, the field distortions at this
contact are uniform across the assumed device depth. However, in the
three-dimensional case, only localized field distortions occur and the average
contact resistance is different from the two-dimensional case, resulting in
the observed difference in the current pulse at the gate contact. In the
results reported in [8,10] the contact resistances were constant at all
contacts. Thus it is concluded here that scaling of the track density in
two-dimensional simulations will provide accurate results for current pulses
and charge collection transients only if the contact resistances are
constant. This, in effect, requires that the field at the contacts remain low
enough to maintain operation in the constant mobility region of the velocity
field relationship. Outside this range, while qualitatively accurate results
may be obtained, the magnitude of any quantitative differences can only be
accessed through accurate, three-dimensional simulations. It is therefore
apparent that in the design of devices which are hardened against single
particle radiation effects, two-dimensional simulation can provide a rapid and
efficient means of exploring various device modifications and structural
variations. However, once such a screening process is completed, the results
of effective hardening approaches should be verified, at least selectively,
using three-dimensional simulation where possible.
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TABLE 1

AVALANCHE GENERATION COEFFICIENTS

An  1.90 x 105

Ap 2.21 x 105

bn 5.75 x 105

bp 6.57 x 105

mn 1.75

mp 1.75
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TABLE 2

MOBILITY PARAMETERS FOR GALLIUM ARSENIDE

PARRMETER EL uALU tYVALUE

a (cnms) 1.0x 106

b (cm/s) 6.0 x 106

c (cm's) 7.5 x 106

Ev (volts/cm) 4.0 x 103  -

Vsat (cm/s) 1.0 x 107

0 2

p0 (cm2 Nolt) density dependent 200
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